EN 生科百年 内网 新内网

检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。

下载Firefox

Computational Microscopes: Applications to Ion Channels

日期: 2015-04-01

定量生物学中心学术报告

题目: Computational Microscopes: Applications to Ion Channels

报告人: 宋晨 博士

英国牛津大学生物化学系 博士后

时间:2015-4-13(周一),13:00-14:00

地点:北京大学老化学楼东配楼102会议室

主持人:定量生物学中心,来鲁华教授

摘要:

Theoretical and computational methods have been widely used in biological studies, and have been proven to be able to act as “computational microscopes” in many cases. Recently, using multi-scale computational microscopes, we observed some very interesting yet unexpected phenomena in our studies on potassium ion channels. Potassium ion channels are one kind of the most widely distributed membrane proteins and play fundamental biological roles by conducting potassium ions in a rapid and selective way. It was believed that, when the channel is open and activated, potassium ions and water molecules alternately occupy the four binding sites of the selectivity filter and permeate collectively. However, our latest multi-scale simulations indicate that this model cannot yield measurable conductance under physiologically relevant trans-membrane potential. Instead, the rapid ion permeation only occurs when there are no water molecules in the selectivity filter and potassium ions form direct contacts. This has been partially confirmed by the revisit to the previous X-ray crystallography data. Therefore, we propose a water-free knock-on mechanism for ion permeation in potassium channels.

欢迎各位老师同学积极参加!