Chemical reprogramming of human blood cells to pluripotent stem cells
Jul. 31, 2025
Prof. Hongkui Deng published a paper in Cell Stem Cell with his collaborator.
Chemical reprogramming offers a fundamentally innovative approach for generating human chemically induced pluripotent stem (hCiPS) cells using small molecules. Our recent studies showed that this approach was highly efficient in reprogramming human fibroblasts to hCiPS cells. However, generating hCiPS cells from human blood cells, which are the most accessible and convenient source for reprogramming, remains a challenge. In this study, we established a robust method that successfully generated hCiPS cells from both cord blood and adult peripheral blood cells. This method achieved efficient reprogramming with both fresh and cryopreserved blood cells across different donors. Notably, this method also efficiently generated an average of over 100 hCiPS colonies from just a single drop of fingerstick blood. These results highlight the advantages of chemical reprogramming for generating hCiPS cells from a blood source and represent a next-generation platform for efficient, scalable, and convenient stem cell production with broad applications in regenerative medicine.
Original link: https://doi.org/10.1016/j.stem.2025.07.003