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Foreword

The Control of Flux by Kacser & Burns [1], originally published
in 1973, together with the work independently developed by Hein-
rich & Rapoport [2, 3], started the development of the field now called
Metabolic Control Analysis. It is still considered today the most read-
able account of the subject. The article is reprinted here (with the
permission of the Society for Experimental Biology) with two types of
alteration. The first is that certain of the terms and symbols originally
used have been replaced by those adopted by international agreement
in 1985 [4] and now in common use in the literature of Metabolic
Control Analysis. The intention behind this is to make this impor-
tant paper more accessible to those who have been drawn into the field
through more recent articles. The changes are indicated where they
first occur and a Glossary of them all is given at the end. The second
type of alteration is the insertion of comments to indicate where sub-
sequent work has led to support and development of the original ideas.
These additions can be recognised by the different style in which they
are laid out, as in this section. The references to the additional work
are given in an second reference list following the original.

D. A. Fell & H. Kacser.
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Introduction

The literature on Control is distinguished by a vast quantity of detailed
information on particular systems and very little discussion on general
problems. There also appears to be confusion, or at least, disagreement —
disagreement on definitions, on concepts, on criteria and on methodology.
There are probably several reasons for this. Firstly, we are concerned with
the properties of very complex systems, complex in the sense that there
are many different types of component which interact in a variety of ways
and hence can display many modes of behaviour. Secondly, there is no es-
tablished general idea of control of biochemical systems, There are bits of
theory but no comprehensive theory.

One bit of theory is usually represented as metabolic maps. These maps
give information on the structure of the system : they tell us about trans-
formations, syntheses and degradations and they represent the molecular
anatomy. They tell us ‘what goes” but not ‘how much’. Another bit of the-
ory is called enzymology. We have many data on individual enzymes, their
kinetics, inhibition characteristics, molecular structure and some theory of
catalysis. All these give us elementary functional information.

It is an obvious step to combine the two parts. And here we immedi-
ately come to a stop since, as anybody who has tried this realises, we end
up with a large set of simultaneous non-linear equations for which there
is no explicit solution (Appendix A). We can, of course, use computers to
solve particular cases. In the hands of an expert such simulation can lead
to insight (e.g, see Garfinkel, 1971 ). More often it will simply confirm that
our assumptions about the system are correct. In either case, however, it
cannot yield a general theory of control.

Discussions on ‘control” or ‘regulation” usually centre on the question
of which enzymes are controlling the flux in a pathway and suggest ex-
perimental means of identification. In the absence of a general theory of
control, the basis of such experimental identification will remain obscure,
being at best intuitively plausible. (See, however, the excellent review by
Rolleston, 1972.) The measurements which are made for this identifica-
tion include the levels of enzymes and of pools, inhibition characteristics
of enzymes and feedbacks, the levels of inhibitors or activators, the mea-
surement of fluxes and their changes under a variety of conditions. The
discussions suggest that ‘controlling enzymes’ can be identified as those
which satisfy a number of different criteria (e.g., see Chance, Holmes, Hig-
gins and Connelly, 1958; Newsholme and Gevers, 1967, Scrutton and Utter,
1968) which are rather directly related to the measurements. It is, how-
ever, not clear in what way diverse criteria are related or how consistent
they are with one another. But principally, what appears to be lacking are
agreed definitions of the various aspects of control to which these criteria
could be applied. The establishment of the necessary definitions and their
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inter—relations requires a rigorous theoretical approach.

Higgins (1963) has presented a kinetic treatment of sequential reactions
and has analysed system responses in terms of ‘reflection coefficients’. Our
treatment is based on essentially the same approach. We shall outline a
general theory of steady—state enzyme networks and apply it to the prob-
lem of the control of flux. 1t involves concepts to which we find it useful to
attach new names and a methodology which is basic to our approach. Four
control measures will be defined, given operational meaning and set into
the framework of a quantitative systems theory.

Parameters, Variables and Responses

We must begin by being clear about the distinction between parameters
and variables in a biochemical system. On the one hand parameters repre-
sent the constant constraints of any organism. We can identify these with
the genetically determined constants of enzymes such as turnover num-
bers, Michaelis constants, inhibition constants, etc., and with the externally
set concentrations of the nutrients, effectors and other substances. Un-
der a wide variety of circumstances enzyme concentrations are found to
be uninfluenced by changes in metabolism, in which case they too can be
treated as parameters. There are, in addition, general thermodynamic con-
straints represented by the equilibrium constants. The system parameters
concerned with enzyme quantity and quality and with the environmental
conditions, are constant for most interpretable experiments, but are, within
limits, under our control. We can set, say, glucose or arginine outside the
system to any desired value and we can similarly, though not quite as eas-
ily, alter the enzymic values by e.g., either changing the dose or the alleles
of certain genes.

The variables, on the other hand, represent the levels of metabolites and
the diverse molecular forms arising from them. It is their characteristic that
they move and settle to certain values. In, e.g., the steady state, which is
both algebraically and experimentally a convenient state to consider, the
concentrations of the pools are time—invariant because each has reached a
balance of formation and removal which in turn depends on other rates, ex-

tends right through the system and involves, in principle, all the enzymes'.

1t has often been said that pools ‘must be maintained at their proper levels’ or that
there is a ‘normal’ level, ‘excess” of which would either be uneconomic or would upset "the
delicate equilibrium’ so necessary to ‘integrate the different metabolic functions’. Natural
selection has been invoked as being responsible for this amazing feat of juggling. Those
who are aware of the forces responsible for coming to a steady state realise, of course, that
this is a fanciful delusion. Almost any set of enzymes will generate a steady state with all
fluxes in operation. The existence of the vast array of genetic variation shows that there
are very many different ‘delicate equilibria” which are just right. As Mark Twain observed,
while marvelling at our amazing adaptation: ‘Our legs are just long enough to reach the
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The pools are in fact the ‘links” in the system’s interactions. Thus pool con-
centrations and fluxes (which are flows into and out of pools) are deter-
mined by the constellation of the system’s parameters. Flux is a systemic
property and questions of its control cannot be answered by looking at one
step in isolation — or even each step in isolation. An analysis must conse-
quently be in terms of the quantitative relations between the parts as much
as in terms of the gross structure or the molecular architecture of its cat-
alysts. Any particular pool or flux is thereby not determined by a single
parameter, but in general, by all of them acting and interacting as a system.
The situation outlined above can be represented mathematically in a fairly
general way (Appendix A).

This raises the first question: Are all parameters equally important in
influencing the value which a particular variable, say a flux, settles to? Or
an alternative form of the same question: What is the quantitative influence
of one parameter on, say, one particular flux and how do we ascertain it?

Clearly if we want quantitative answers we must ask quantitative ques-
tions. Let us take a flux through a pathway and focus our attention on
one of the enzymes. If we could, in a thought experiment or in a real ex-
periment, make a change in the quantity of this enzyme, and this enzyme
alone, and observed any change in flux which may be caused, this would
be a relevant observation. We would get an idea how sensitive the flux is
to changes in this enzyme’s concentration.

Secondly, if we extracted the enzyme and investigated how its rate of re-
action varied with, say, an inhibitor concentration, this would be a relevant
observation. This might tell us how controllable this enzyme is, particu-
larly if we knew what the inhibitor concentration in vivo was. Thirdly, we
could investigate how changes in the pool concentrations, from the values
they have, would affect the rate of the reaction. This might tell us how
‘elastic’ that step is in response to pool changes.

If it is agreed that these three vague questions are not unlike what many
people have in mind when talking about control, we can proceed to make
them more precise. We will in fact show that they allow us to formulate
a quantitative systems theory of control. But first we must translate these
questions into a form which is suitable for both experimental procedures
and theoretical evaluation.

The following example will suggest how this can be approached. Take
an external parameter, say an effector acting as a specific enzyme inhibitor,
I, which we allow to act on an enzyme in the system.

Let us measure by some suitable method, the flux, J, carried by that
enzyme step in the presence of a certain fixed external concentration I’.

Flux was symbolised by F in the original.

ground.’
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For this part of the argument it is assumed that the internal level, I, depends
only on the external level I'. In the case of compartmentation the effective
internal concentration may be difficult to ascertain.

Figure 1:

How does variation in I affect |? Let us impose such a variation, A, and
observe how | changes. Since the absolute changes, AI and AJ, depend on
the units chosen to measure these, it is best to use fractional changes to
describe this, A]/] and AI/I, independent of units.

A measure of the effect of I on | would be the ratio

N
J I
But since, in general, the relationship is non-linear, this ratio will depend

on the size of the fractional change made. If, however, we reduce the size
of Al, then, in the limit, we obtain a ratio of differentials independent of

step size
A]/AI d]/ R{.

This coefficient, R] [Note: R in the original], will be recognised as the scaled
slope at the value of I
aJ 1 i I
—.— = R} = slope.-.
' 1 = slope ]
In practice, an infinitesimal change cannot be achieved, but very small in-
tervals, J, can approximate this:

o] /oI i
— / — =R
/T
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Figure 2: Effect of finite and infinitesimal changes on a hypothetical func-

tion | = f(I). AJ/AI # dJ/dl.

or, more generally, for any parameter

5] /6P
]]/PQR{,. 1)

Let us make two points. Firstly, it is important that we consider small
changes (what we call the method of modulation), in order that a good es-
timate of the slope should be obtained. We shall use this method through-
out our treatment. If necessary this can be done by interpolation between
points if the shape of the curve is ascertained.

Secondly, by this procedure we can relate two measurements through a
coefficient whose value applies to the system in the state it is. The ratio can
be re—expressed as:

fractional change in flux = R%-fractional change in inhibitor.

We may call R; the Response Coefficient and its value may be thought of as
an overall measure of the control exerted by the inhibitor at the value it has.

We will now show how this Response Coeffcient can be usefully sep-
arated into two parts, the first, measured by the Controllability which is
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concerned with the response to inhibitor changes of the enzyme in isolation,
and the second, measured by the Flux Control Coefficient which is con-
cerned with the response of the whole system to changes of the enzyme.

The Flux Control Coefficient, symbolised Cij , was named Sensitiv-
ity, symbolised Z, in the original article.

The Controllability Coefficient

The term Controllability Coefficient has not been extensively adopted,
and it is now generally regarded as an Elasticity (introduced later).
The distinction being made here by Kacser & Burns was between the
response of an isolated enzyme to a chemical whose concentration was
determined externally to the metabolic system under consideration,
i.e. a parameter, and the response of an isolated enzyme to a metabo-
lite whose concentration was set by the metabolic system itself, i.e. a
variable. The former case is their Controllability Coefficient, given the
symbol x, and the latter is the Elasticity Coefficient, given the symbol
e. Nowadays, if it is necessary to distinguish between these two types
of elasticity coefficient, the elasticity to a parameter (the controllability
coefficient) can be notated as "¢ (or, alternatively, 7t [5]).

Figure 3: Effect of small changes in inhibitor on the rate, v. (a) Competitive,
(b) allosteric.
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When we consider the possible mechanisms which may be involved in
the inhibition example, it is immediately clear that the value of this Re-
sponse Coefficient depends, in part, on the nature and the extent of the
interaction of the inhibitor with the enzyme. If this interaction is of the fa-
miliar competitive kind we would expect to get the relationship (a) (Fig. 3).
On the other hand, should the enzyme be an allosteric one with a high Hill
coefficient, the relation will be as in (b). Clearly the difference between these
two possible situations must have something to do with the size of the re-
sponse. This is the aspect which is usefully referred to as the Controllability.
We are here considering the interaction of enzyme and inhibitor isolated
from the complete system, as is ususal in most enzymological exercises,
and that is why we have described the rate as v and not as a system flux,
J. It is, however, important that such determinations are not carried out at
some arbitary or traditional concentrations of the substrates and products.
Instead they must be held constant at precisiely those steady-state levels
which obtain in the organism. The necessity for this is particularly evident
when a competitive inhibition example is considered since the response
in rate, for a given 41, will depend on the absolute value of the substrate
concentrations. We therefore have another important control measure. It
consists of isolating, or virtually isolating, the step from the rest of the sys-
tem so that the surrounding pools are not free to move. Within this milieu,
we then determine the change in rate consequent upon a small change in
a parameter, P, such as the inhibitor, I, used in the example [Note: on a
particular enzyme denoted i]

doi fdl _ i

0 I N I
or operationally,

& ﬂ ~ Kgi

0 I - -

In general, for any parametric effector acting directly on the enzyme, we
have: 5 5P
Ui ol
— /== . 2
v /| P €p 2)

This is "¢, the Controllability Coefficient. Like the Response Coefficient, it
is a differential applied to the particular constellation of enzyme, substrate
and effector values, but unlike the Response Coefficient it defines only the
‘local” response of the step in isolation without allowing it to influence or
be influenced by events in the rest of the system. The Controllability, then,
is a measure of the extent to which the effector has the potential to influence
the flux.

Having determined the Controllability we do not, however, know what
the net change in the system will be, since this depends on the response of
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the rest of the system. This, as we have seen, is mediated via the ‘links’, the
metabolites which are shared among the enzymes. The effect of a change
in inhibitor when the metabolites are free to move will be that they settle to
new values when a new steady state will be achieved. It is immediately ob-
vious that, in general, this movement of metabolite pools will also result in
a new constellation of metabolites around the inhibited enzyme which has,
in the first place, inititated these changes. The outcome of all this is then
to place the enzyme into a metabolite—inhibitor environment different from
that which applied to the determination of the Controllability. The system
flux change consequent upon a change in inhibitor will therefore be different
— and in general lower — than the rate change determined in isolation.

The Flux Control Coefficient

We must therefore attempt to assess this system response. We have already
had a hint how this is to be done. Since the system adjusts by transmitting
the pool changes arising at the affected enzyme, it is really changes at that
step when it is embedded in the system which require discussion. For this,
no reference to the immediate cause of the change is called for. The change
in the rate, caused by the change in inhibitor, can always be thought of as
equivalent to some change in the concentration of the enzyme. If, for example,
some inhibitor change causes a 1% reduction in rate, this is equivalent to
a 1% reduction in enzyme concentration. We can therefore ask: how is the
effect of a small change in enzyme concentration modified by the interac-
tions of the rest of the system? For this we must measure system fluxes and
measure the results of enzyme modulations.

As before, we can determine the respective fractional changes. The
symbol ¢; here refers to enzyme concentration, [Note: of a particular enzyme
denoted i] but its more general meaning is discussed in Appendix A

d] dei A
7/ =
or 51 /6
o) [ o)
J /Ei ~G ©)

Ci] can be described as the Flux Control Coefficient 2 of the system flux with
respect to enzyme concentration. It represents the system’s sensitivity to
modulations of one of its components, and is a measure of the control im-
portance of the step per se whether the step is or is not controllable by any
external effector.

%In a previous publication (Kacser & Burns, 1968) this coefficient was symbolised by
C but no other coefficients were defined. In another treatment Higgins (1965) defined a
similar coefficient of ‘Control Strength” also designated by the symbol C.
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In the original publication of 1973 and many that followed, this
control coefficient was symbolised by Z and called the Sensitivity
Coefficient. The footnote to the above paragraph was therefore more
significant than appears in the light of the current terminology. The
change in terminology ought not to obscure the fact that Metabolic
Control Analysis is a form of sensitivity analysis, such as is used for
equivalent purposes in other scientific fields.

4 ° S 4 —————o
s ° 3 r_———-—"—.’—'
/ /
3t 4 3+ I,’
II /
X / X /
2 2F / 32+ 9
[T / [ /
/ /
/ /
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Figure 4: Effect on flux through arginine of different concentrations of the
last three enzymes in the pathway. The wild type (homokaryon) level is
given, in each case, as 100%. Each graph represents different heterokaryons
and each point represents a different nuclear ratio in the mycelium of Neu-
rospora crassa [6].

In some circumstances we can directly determine these Flux Control
Coefficients. An example of this comes from the arginine pathway in Neu-
rospora investigated by Dr R. Tateson in our laboratory [6]. Part of this
pathway is shown in Fig. 4. The flux of arginine can be determined by
estimating the amount of urea produced and the amount of arginine incor-
porated into protein in a given time interval. We would like to know how
sensitive the flux is to modulations in the enzymes. They are all clearly
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necessary since elimination of any one (by genetic blocks) reduces the flux
to zero. But how important are they at the level they are? In Neurospora
we can modulate the concentration of any enzyme by means of suitable
heterokaryons. In this case mixtures of two nuclear types, one of which
contained a functionally inactive gene for one of the three enzymes, were
constructed. Depending on the nuclear proportions of the two types of nu-
clei, mycelia with different (and lower) concentrations of the enzyme were
obtained. Fig. 4 shows the result of such experiments with three series of
heterokaryons. For the moment two aspects will be considered. In the first
place it will be noted that, at the normal ‘wild type” level, all three enzymes
have a small Flux Control Coefficient as indicated by the slope of the curves
at the 100% enzyme points. Secondly, although we have not many points at
the lower parts, for technical reasons, it is clear that the curves must come
down to the zero point. The curves must therefore increase their slopes
and, at very low levels of enzymes, the relationship approaches propor-
tionality. The coefficient will then approach unity. This means that there
will be an equal fractional response in flux to a given fractional change in
the enzyme. At that point, then, an enzyme might be said to be “fully con-
trolling” the flux or to be a ‘bottleneck”:

o / oei =cl - 1(controlling).
]/ e :

What if the enzyme sits in a position when its coefficient is 0.5? Should we

say that it is half controlling the flux or is half a bottleneck? At this point

we realise that we must not fall into the semantic trap of using language

where only a precise quantitative index can represent the situation.

It should be noted that the three curves were constructed each with
the other two enzymes at the normal 100% levels. For reasons which will
appear later, it is not possible in this situation for all three enzymes to have
a coefficient of unity simultaneously. Only one can be in this position at
a time. It is of course possible, indeed likely, that control is, so to speak,
shared between many enzymes insofar as they all have coefficients between
zero and one.

Many experiments have since been published where Flux Control
Coefficients have been measured. Taken together, they confirm that
near—zero and small coefficients are very common, whereas values ap-
proaching 1 have been rare. Some of these experiments will be cited
later and more can be found in recent reviews, e.g. [7, 8.

Before we go into more subtle aspects of control, and in particular into an
analysis of the various factors that contribute to it, it is worth pointing out
again that the coefficient is defined as a differential at one point and in
practice therefore requires small changes to define it when the complete
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curve is not available. By contrast, a large step, say from 100% to 1% of
activity will almost inevitably lead to a severe reduction in flux but will not
give any information about the Flux Control Coefficient either at 100% or

1%.

100 — | |
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Figure 5: Effect on flux to melanin of different tyrosinase activities. The
wild-type (black) level is given as 100% and so is the corresponding flux.
The other points are obtained from genetic substitutions at the albino locus
of the mouse. (From Andrews, Butfield & Kacser, in preparation.)

Another example comes from the work of Dr Kathryn Andrews inves-
tigating the melanin flux in the mouse (Andrews & Kacser, in preparation).
The flux can be estimated in the skins of young mice. The pathway is a
‘short” one and its probable structure is given in Fig. 5. By suitable genetic
substitutions the specific activity of tyrosinase can be varied as shown. In
contrast to the arginine pathway enzymes, variation in this enzyme results
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in points on the ‘lower” part of the flux curve and the coefficient for nor-
mal” (wild-type) levels is not very small.

These direct means of measuring Flux Control Coefficients are not al-
ways feasible and we shall discuss important indirect means in a later sec-
tion.

Further experimental evidence comes from the work of Nieder-
berger et al. [9] where tetraploid yeast was used and the flux was
monitored as a function of each of the last five enzymes in tryptophan
synthesis. By means of null mutants, a series of strains containing be-
tween zero and four doses of each of the genes specifying the relevant
enzymes could be obtained. As before, the flux control coefficients were
found to be very small at the 100% enzyme concentrations.

Similar flux—enzyme curves have also been observed by: titration
of glycolytic flux in liver homogenates with added enzymes [10]; vari-
able induction of tryptophan 2,3—dioxygenase in tryptophan catabolism
in rat hepatocytes [11] and of B—galactosidase in the lactose catabolism
of E. coli [12]; and variable expression of one of the elements of the glu-
cose transporter system in E. coli on transport and catabolic flux after
placing it under the control of a variably—inducible promoter [13]. The
Flux Control Coefficients observed in these ways have varied between
0 and 0.8, with lower values predominating at normal enzyme con-
tents.

The Partitioned Response

We therefore have defined two measures of control each concerned with
separate aspect, The Controllability Coefficient, “¢’,, and the Flux Control
Coefficent Cl.] . The net response depends upon both, and it can be shown
by a strict theoretical treatment (Appendix B) that the Response Coefficient
is the product of the two control measures:

R}, = C] el (4)

This relationship reveals that in vitro studies can be misleading in predict-
ing the effects in the in vivo situation without a knowledge of Flux Control
Coefficients. The Flux Control Coefficient is a system property indepen-
dent of whether any effectors act on the enzyme or what their strength is.
The Controllability is a local property of the enzyme in its environment
independent of what changes it might set into motion in the rest of the sys-
tem. For both we have indicated experimental procedures which can, in
principle, measure their coefficients. There are, of course, the equivalent
algebraic operations consisting of partial differentiation of the relevant rate
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expressions (Appendix A). These will be shown to be useful in the further
analysis of control.

Groen et al. [14] have made brilliant use of this relationship in
their study of mitochondrial respiration, which was the first paper to
use the inhibitor titration method for the determination of Flux Con-
trol Coefficients. Since then, inhibitor titration has been one of the
most extensively applied techniques in experimental Metabolic Con-
trol Analysis (e.g. see [7, 8]).

The Flux Summation Theorem

While it is useful to determine the value of the Flux Control Coefficient for
particular steps (in order to see how narrow the neck of the bottle is), there
is a more important consequence of our sensitivity analysis. This concerns
the distribution of coefficients in a pathway.

We shall discuss this with reference to a simple sequence of transforma-
tions catalysed by enzymes. Consider a chain of enzymes E; to E,

E, E, Es E,
Xr — S5 — S — 50 — X
Figure 6:

with any values of Vj;4x, Ky, etc., and measure the flux to X, (dX,/dt = ])
at steady state. All the pools will be at their steady—state values since their
net rates of formation and removal are equal. If, in a thought experiment,
we were to increase all the enzyme concentrations simultaneously by the
same small fractional amount, «,

(561'
€

=u (5)

the balance of all the rates would remain the same, i.e. the pools would not
move. The fractional change in the flux however, would be exactly «:

i,

This we may call the ‘co-ordinate property” of the pathway. How is this
brought about? Provided a, the common fractional change is small, this to-
tal change, 6] /] can be considered as the sum of all the individual changes,
Y.(6]/])i, which would be caused by the alterations to each of the separate

(6)
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enzymes. For the ith enzyme the definition of the Flux Control Coefficient

gives:
(4)/5-

There are, of course, as many Flux Control Coefficients as there are enzymes
in the chain (n). We can write, using relation (5):

0]/])i = Cla

The summation gives

-E () g

1—n 1—n

From (6) it follows that

Yy cl=1 ?)

1—-n
The sum of all the Flux Control Coefficients is equal to unity. This means
that in such a chain of enzymes the Coefficients are distributed so that they
are all smaller than unity and only one could approach full control impor-
tance with a coefficient nearly unity. Equally possible is that none of the en-
zymes is of major importance. ‘Pacemakers” or ‘bottlenecks” do not there-
fore necessarily exist in a particular system. It is interesting to note that
this conclusion is consistent with the general evidence from inborn errors
of metabolism. Most of these are fully recessive which means that the usual
50% reduction in enzyme activity in the heterozygote has almost no effect
on the flux.

The Summation Theorem, demonstrated with reference to a simple chain
where only one system flux exists, can be shown to apply generally to sys-
tems of any complexity (Appendix B). Any flux in such a system will satisfy
the condition that the sum of its coefficients over all the enzymes in the sys-
tem is equal to unity. This allows for a variety of relations such as feedback,
coupling and branching. In the case of branching, increasing an enzyme in
one branch can result in a decreased flux in the other branch so that we
obtain negative coefficients. This will, of course, complicate the analysis of
control distribution in such systems.

Although it is true that, in pathways with branches and cycles,
certain of the Flux Control Coefficients can be negative, and that this
allows the theoretical possibility that one Flux Control Coefficient could
be greater than unity there are no experimental examples of such large
positive coefficients at present. However, there have been reports of
two flux control coefficients in branched systems both being near 1,
associated with a coefficient of -1 [15, 16].
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One corollary to the Summation Theorem is that, in a system containing
a reasonable number of enzymes, almost all the enzymes will appear to be
‘in excess’ in the sense that, choosing any one, its quantity or activity can be
reduced (sometimes considerably) without appreciable effect on the flux.
This form of words has caused some confusion, particularly in the minds
of those who imagine that all enzymes should have activities which are
‘just sufficient” for the task. We have shown that it is impossible for such a
situation to exist.3

Kacser & Burns in their paper “The molecular basis of dominance’
[17] discuss in some detail why most mutants show recessivity, that is
the heterozygotes of mutant with wild—type have a phenotype not very
different from that of the wild—type homozygotes. This arises directly
as a systems property of metabolic pathways if the enzyme in such ho-
mozygotes has a very small Flux Control Coefficient, as is generally
found. Previous explanations of dominance, such as Fisher’s, have as-
sumed it is an evolved property, but this is not consistent with the
observation of dominance in artificial diploids of an organism that is
normally strictly haploid [18]. On the other hand, these results are
perfectly consistent with arquments presented by Kacser & Burns.
For these reasons, the impact of “The Control of Flux" has been as sig-
nificant in genetics as in biochemistry.

A second corollary arises from the situation when, in a given system,
say, one enzyme quantity is drastically reduced. In such a case, this step
may change from one having little control to one of importance, i.e. the Flux
Control Coefficient has increased. Since the summation property applies
equally at the new position, the Flux Control Coefficients of all the other
(unchanged) enzymes must have changed so that the sum remains equal to
unity. This demonstrates that the Flux Control Coefficient of one enzyme is
a system property only in part determined by its own parameters.

In genetics terminology, such a situation would be described as
showing epistasis, which is an inherent property of multi-enzyme
systems [19].

Control Analysis of Pathways

We can now return to the analysis of the net response which was seen to be
dependent on the relationship

R{) = Cl.] Fel,

3The implication of this for the problem of Dominance and its evolution will be dealt
with in a separate publication. [Note: ref. [17]; see also the added commentary above. ]
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Since 5] /6P
R~ /&=

P ] P /
we can write 5] 5P

This formulation shows that the flux response is dependent on the numerical
values of three factors. The first, Ci] , indicates how sensitive the system is
to change at this step [i] and the summation property imposes restraints on
its magnitude. Many authors may have had such a concept in mind when
they have attempted to divide enzyme steps into ‘bottlenecks’, “pacemak-
ers’, ‘rate limiters” on the one hand and their presumed opposites on the
other. With quantitative specification of the coefficients such a simple di-
chotomous classification is not very meaningful. It is true that in a limiting
case, when the Flux Control Coefficient of one step is very large while the
others have very small values, the choice of an appropriate term may be
found to be satisfyingly descriptive. In general, however, one expects a
distribution of the values with none of them necessarily dominating and
this is quite independent of the Controllability which may operate. Much
of the interpretation of results in the literature is confounded by the search
for the alleged rate-limiting step (or whatever terminology local tradition
specifies).

This was particularly well illustrated by the history of research on
the control of mitochondrial oxidative phosphorylation and liver glu-
coneogenesis. The fruitless arguments about the rate-limiting steps in
both these pathways were revealed for what they were when the Ams-
terdam group measured the Flux Control Coefficients in both [14, 20].

Any value for the Controllability, Ksé,, the second factor, may be associ-
ated with a low Flux Control Coefficient and hence results in a very small
response. On the other hand, control can be exerted in such a situation
when the Controllability Coefficient [Note: external elasticity coefficient] has
a very high value (such as may be the case in allosteric systems). In this
case an effectively controlling enzyme need not be a ‘bottleneck” although
it may become one once it has been acted on by certain concentrations of the
effector (see, however, the later section on feedback inhibition). It is clear
that the inverse is equally true. Only a quantitative analysis can elucidate
the situation.

Finally, since the response is dependent on the magnitude of the effector
change, 6P/P, a judgement as to whether control is actually exerted must
depend on exact physiological information of possible movements of P.
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Metabolic Controllability: the Elasticity Coefficient

The analysis so far has dealt with the effects on system properties such as
fluxes, exerted by substances which are controlled, or in principle control-
lable, by setting some parameter external or internal to the system. In many
cases, however, inhibitors are substances generated in the metabolism and
are therefore variables. Any changes in such metabolite levels, be they sub-
strates, products or effectors, are of course only brought about by changes,
albeit remote ones, in one or more parameters. Such changes affect many
pools simultaneously. Thus one cannot describe the influence of metabo-
lites on system fluxes in the same manner as was used for parameters. Nev-
ertheless, many investigators assert that pools may exert ‘control’. We will
now consider the role of such pool-mediated controls and their relation to
Flux Control Coefficients.

In the same way as we were able to determine the Controllability Coef-
ficient of some parametric inhibitor on the rate of a reaction, we can apply
this procedure to, e.g., the substrate. Remembering that the enzyme should
be isolated from the rest of the system, but with all interacting molecules
held at their in vivo concentrations, we can modulate the substrate, for ex-
ample, and obtain a coefficient [Note: for enzyme i]:

doi [dS _
(% S S
o ) oS
o0 [O2 L
o S €s . 9)

This may be called the Elasticity Coefficient and for any reaction there are as
many coefficients as there are metabolites and effectors which interact with
the enzyme. It will be noted that the method of determining these elastici-
ties is not unlike part of a Michaelis constant or inhibition constant determi-
nation except that the molecular milieu is the i1 vivo one and the movement
of the pool is over a small distance. Although we have defined both Con-
trollability and Elasticity by means of direct operations which may have
considerable practical difficulties, their importance for analysing control is
unimpaired by this. (We shall discuss alternative methods in a later sec-
tion.) In what follows it will be seen that the definitions of Elasticities allow
us to make use of other measurements in a meaningful manner.

Of particular interest are the Elasticities of an enzyme with respect to
effectors which are metabolically somewhat remote from the enzyme’s ac-
tion. In the case of, e.g., end—product inhibition, it is not sufficient to
demonstrate that the extracted enzyme is inhibitable under assay condi-
tions. Metabolically significant statements must rely on the Elasticity es-
timates made under conditions equivalent to the internal milieu. Further-
more the range of end—product concentrations investigated should be re-
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lated to the known in vivo concentration changes. The finding of a high
end—product Elasticity could warrant the use of the term ‘regulatory en-
zyme’ or ‘key enzyme’ but, as before, such classificatory nomenclature is
much less desirable than the quantitative description of its Elasticity. A
high Elasticity will often be manifested as pool movements around the in-
hibited enzyme satisfying the Cross-over Theorem (Chance et al. 1958).
Having found a high Elasticity does not, however, mean that the enzyme
necessarily plays an important role in ‘regulating” the flux. The value of
its Flux Control Coefficient is an equally important factor. We shall discuss
further aspects of this in a later section.

The substrate Elasticities are important in being concerned with the
linking pools between adjacent enzymes. In fact we shall show that they
apportion the Flux Control Coefficients, and hence the control, in a chain
of such enzymes. Consider two enzymes within a pathway linked by a
common pool S;.

N Ei E, /!
— SO — Sl — 52 —
/ N
Figure 7:

The rest of the system can have any structure or complexity provided S;
does not interact with any other enzymes in the system. We can perform
another thought experiment and make simultaneous and opposite changes
in the concentrations of E; and E; such that the steady-state values of Sy
and Sy (and hence the flux) remain unaltered. The only change is in the
level of S1. The effect of the movement in S on the rates of the two enzymes
is determined by their Elasticities with respect to 51, namely 8}91 and 8%1 . An
argument (Appendix B) based on this leads to the following;:

Clel, +Cied =0 (10)

This means that there is a simple relationship between the Flux Control Co-
efficients of two adjacent steps in a pathway and their Elasticity Coefficients
with respect to the common pool.

This equation has since become known as the Connectivity Theo-
rem, though that name was not used in this paper.

It enables one to estimate the relative values of the two Flux Control Coef-
ficients without the direct method previously discussed. Equation (10) can
be written as:

cl/c) =~} /el (11)
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(The negative sign arises because the two Elasticity Coefficients are nor-
mally of opposite sign, i.e. product ‘inhibits’, substrate ‘activates’ the rates.)

Thus by measuring the local response of enzymes (Elasticities), the ratio
of their effects when acting within the system (Flux Control Coefficients)
can be ascertained. This can clearly be extended to determine the relative
Flux Control Coefficients (C{ :Cé:Cé:Ci:. ..) of a number of successive steps
of a pathway so long as pools internal to the pathway affect only their adja-
cent enzymes. The relative Flux Control Coefficients of a pathway can thus
be related to measurements on the separate enzymes. Unlike the Control-
lability which measures the potential of one enzyme to control a flux, the
Elasticities enable us to connect different steps in a pathway.

This idea has since been developed further both theoretically and
experimentally, as will be explained in notes to later sections. Groen's
study [20] of hepatocyte gluconeogenesis illustrated this by being the
first to use elasticity estimates to determine the Flux Control Coeffi-
cients on the gluconeogenic flux.

In summary, we have argued that certain aspects of control, viewed at
the level of the whole system, can be described quantitatively by means
of the system coefficients R{, and Ci] and we have indicated experimental
means of measuring them. These will be seen as particular applications of
Higgins’ general ‘reflection coefficients” (Higgins, 1963). On the other hand
we have also considered control as it affects the rate of the individual en-
zymes, considered in isolation from the rest of the system. This is described
quantitatively by the two types of ‘local’ coefficients ¢ and *e’,. The results
of introducing these local coefficients is that it becomes possible to advance
a general theory which relates the control behaviour of the whole system to
the properties of its components. As will be shown in the next section this
directly leads to the establishment of criteria of control in terms of familiar
and readily accessible measurements.

Applications to Control Criteria

The above analysis connects Flux Control Coefficients to the Elasticities of
enzymes. This makes it possible to introduce such quantities as specific
activity (Viuax), pool levels, degree of inhibition, etc. To establish these re-
lationships to elasticities requires us to make assumptions about or have
information on the form of the rate expression which applies to the steps
under consideration.

A method which avoids any assumptions about the form of the
rate expression has been developed by Kacser & Burns [21]. This has
now been called the ‘double modulation method” and has been incor-
porated into the ‘top—down’ procedure that has been applied by Brand,
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Brown and colleagues [16, 22] to the control of respiration. Theoreti-
cal analysis of the method continues [23]. In the modulation method,
measurements of metabolite pool changes and flux changes in situ are
made consequent on two independent changes (e.g. inhibitions by un-
specified mechanisms). This makes it possible to obtain values for the
elasticities without knowing what rate equations operate. A further
development has recently been proposed [24] that allows all the elas-
ticities and control coefficients to be obtained from a set of such in vivo
modulation measurements.

For the case where Fig. 7 represents a chain of unimolecular transforma-
tions, a suitable form of the rate expression (allowing for reversibility and
saturability) is, for the first enzyme, e.g.

_ Vi/My(So — S1/Kq)

= , 12
14 So/ My + S1/M; (12)

0

where Sp and S; refer to the pools and K refers to their equilibrium con-
stant. V4 and M; are the maximal velocity (V;.x) and Michaelis constant
(Ki;) measured in the ‘forward” direction and Mj is the Michaelis constant
for the backward direction. The suffix ‘1’ for the constants refers to the
number of the enzyme in the chain. (For expressions of more complex re-
actions see Cleland, 1963.)

The symbol M, to stand for the more familiar K,,, was used in the
original to simplify the formulations, and has been retained here for
the same reason.

Let us first consider the limiting case, amenable to immediate analy-
sis, where we can assume that all the enzymes concerned are “unsaturated’
(when the value of the denominator of (12) approaches unity). Here the
appropriate rate expressions simplify and for two successive steps are:

v1 = (Vi/M1)(So — S1/Kq) (13a)
Uy = (Vz/Mz)(S1 — Sz/Kz). (13b)

There were superfluous division signs between the bracketed terms
in the above equations in the original.

The operation of modulating S; to determine the Elasticity Coefficients has
its algebraic equivalent in differentiating these expressions with respect to
S1 (Appendix A). This yields

1 _Sl/Kl

851 = SO . Sl/Kll (14a>
and
S
2 1
- 14b
T 5 -5 /K, (145)
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The signs of these two equations were transposed in the original.

It is thus seen that the Elasticity Coefficients are related to the pool config-

uration around the enzymes at steady state. Using equation (11) we obtain
So—S51/K4

(S51—S2/K2) /Ky

Cl/Ch= - /el =

We can therefore express the ratios of Flux Control Coefficents as ratios in-
volving the steady-state pools. Repeating this for successive pairs of en-
zymes, we obtain the ratio of Control Coefficients for a sequence of steps in
terms of pools

Cl:C):Cl:...=(So—S1/K1): (S1—52/Ka) /Ky : (S2— 53/1<3)/(1<11<?£5:). .

Disequilibrium

The first thing to note is that the difference terms represent the degree to
which the step is out of equilibrium. (For equilibrium this difference ap-
proaches zero.) One can express this in another way, given by the Disequi-
librium Ratio, p, which for the first step, e.g., is

p1 = (51/S0)/ K1 = (Mass Action Ratio/Equilibrium Constant).
Relation (15) can be rewritten in terms of the ratios:
C{:Cé:Cé:... =1—-p1:01(1—p2): p1p2(1 —p3) = ... (16)

Disequilibrium has frequently been used as a criterion (Krebs, 1947; Hess
& Brand, 1965; Williamson, 1965; Newsholme & Gevers, 1967; Krebs, 1969)
for classifying steps into non—controlling (‘equilibrium’) and potentially
controlloing (‘non—equilibrium’) categories. Since the deviation from equi-
librium can take any value between these extremes, it is difficult to see
where the two classes should be separated, although an arbitary limit of
0.2 has been suggested (Rolleston, 1972) on thermodynamic grounds. More
important, however, is the fact, shown in the above relations that the Dis-
equilibrium Ratios do not themselves represent the correct functions for
comparison. Relation (16) represents the proper formulation. We are thus
able to assess the relative Flux Control Coefficients in terms of pool ratios
and equilibrium constants only. It will be noted that since only pool ratios
are involved many of the difficulties attached to determinations of absolute
concentrations are avoided.

One result clearly follows. If any of the steps is at equilibrium (p; = 1),
the term corresponding to its Flux Control Coefficient becomes zero and
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hence the step becomes completely insensitive. A further consequence is
that all steps ‘to the right” act, from a control point of view, as if that step
were not present (all terms multiplied by p; = 1). This conclusion is, of
course, in accordance with the commonly held view that equilibrium reac-
tions are ‘non—controlling’. We must, however, sound a cautionary note.
No step in a system carrying a flux can be exactly at equilibrium and there-
fore its exact p value must be considered within the above relation (16) in
comparison with the other steps.

This is perhaps best illustrated by two simple examples. Taking three
successive steps we can show using relation (16):

(1) The step nearest to equilibrium (largest p) is not necessarily the least
sensitive to control (smallest C 1] )-

Step no. 1 2 3
Assumed p 0.9 0.01 0.1

Calculated Cl-] ratios 0.10: 0.89: 0.008

Step no. 1, which is 90% towards equilibrium, is 12 times more sensi-
tive than no. 3 which is further away from equilibrium (10%).

(2) The step most out of equilibrium (smallest p) is not necessarily the
one most sensitive to control (largest Ci] ).

Step no. 1 2 3
Assumed p 0.3 03 0.01

Calculated C/ ratios  0.70: 0.21: 0.09

Step no. 3 has the highest disequilibrium (1%) of the three but is the
least sensitive to control.

(In both examples the last step has the smallest C Z] . This is, of course, not an
invariable result, although there is a “position effect’ tending this way.)

Although these are constructed counter-examples, they are intended to
demonstrate that the intuitively held view must be modified by reference
to the more rigorous relations derived here.

Analysis of the mammalian serine synthesis pathway [25] pro-
vides an experimental illustration that the largest control coefficient
can be found on the final step, and also that near—equilibrium steps
can have a non—zero control coefficient.
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Maximal Rates

Instead of formulating the ratios of Flux Control Coefficients in terms of

pools we can replace the terms in relation (15) by maximal velocities. Using

the rate equations (equation 13) for the condition when they are equal to the

common pathway flux, J, this yields the equivalent form:
_ M My M

C]:C]:C]:..._—. :
1r=2""3 Vi T WKy T VK Ko

(17)

Again it can be seen that maximal velocities are not in themselves a
proper measure of Control. The values of the equilibrium and Michaelis
constants can be seen to be equally important. With these additional mea-
surements, however, we have a feasible criterion in relation (17).

Criteria for control involving Disequilibrium Ratios and maximal ve-
locities (Vyax) have often been advocated. No reference to the degree of
saturation of the enzymes is made in such discussions. We have shown
that, for the case of a chain of unsaturated enzymes, these experimental
quantities, although relevant, are not themselves criteria. We must now
enquire what role saturation plays.

It can be shown that the simple formulation for the Elasticity Coeffi-
cient previously established (equation 14) is modified by an additional fac-
tor (Appendix C). Thus for the second step:

S

2 1

€s, = 5 575 (unsaturated) (14b)
5 J

2 _ 1 _

€, = 5 -5,/ (1 V2> (saturable). (18)

By additional determination of the system flux, J, and the maximal ve-
locity, V>, it is possible to make a correction to estimates based on the un-
saturated theory.

One particular limiting case is of some interest. When the maximal ve-
locity of a reaction is found to be very near to the measured system flux,
their ratio, J/V;, approaches 1 and the correction factor approaches zero.
This means that the Elasticity Coefficient becomes very small and the Flux
Control Coefficient of the enzyme becomes large by comparison with oth-
ers. This is because the two coefficients are inversely related (equation 11).
In this case, therefore, the V,,,,, of a single step is a criterion for a high Flux
Control Coefficient and this has been recognised by a number of authors
(e.g. see Krebs, 1969). It is worth pointing out that the condition V5 ~ |
carries with it the implication that the enzyme is highly saturated and its
Disequilibrium Ratio, p, extremely small. Either of these conditions sepa-
rately, however, is not a valid criterion.

In the absence of such extreme conditions, the general formulation of
type (18) must be used and will give the desired information.
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Although the previous sections have referred to the calculation of
the ratios of Flux Control Coefficients, if the ratios of all the Control
Coefficients are expressed in terms of their elasticity ratios, the addi-
tion of the Summation Theorem requirement that all the Flux Control
Coefficients add up to 1 is sufficient to uniquely determine their val-
ues. This was first applied experimentally to hepatocyte gluconeoge-
nesis by Groen et al. [20]. A systematic procedure for expressing the
values of the Flux Control Coefficients in terms of the Elasticity Coeffi-
cients, the matrix method was proposed by Fell & Sauro in 1985 [26]
and was claimed to be extensible to complex pathways that included
feedback inhibition, cycles and branches. This led to much work on the
mathematics of these relationships, [27, 28, 29, 30, 31] culminating in
the proof by Reder [32] that such calculations were generally possible
in metabolic pathways of any complexity provided they attained a sta-
ble steady state and were fully connected by mass flows. See the notes
to the section on Limits and Limitations for further discussion, par-
ticularly concerning two or more metabolic processes connected solely
by catalytic or requlatory effects and exceptions to the summation the-
orem.

Feedback Inhibition

Having discussed the role of the enzymes” immediate metabolites in the
control of flux, we must now turn to those interactions involving molecules
not metabolised by the enzyme. The classical case is that of feedback inhi-
bition.
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Figure 8:

Just as in the last section the Elasticity Coefficients with regard to shared
pools formed the basis for relating the Flux Control Coefficients of adjacent
enzymes, now the pool Sz forms the control link between three enzymes E;,
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Ez and E4 (Fig. 8). By an extension of the previous argument for equation
(10) it is easy to show that (Appendix B):

Cles, + Cled, + Clet, =0 (19)

The three Flux Control Coefficients are connected by the Elasticities to the
common pool S3. The presence and nature of the inhibition function, how-
ever, produce complexities and make insight into the problem somewhat
opaque. Let us consider again the two types of inhibited enzymes, this time
affected by the internal pool S3, differing only in their inhibition curves. A
steady state of the system with the pool at S5 can be maintained with ei-
ther of these enzymes. In each case the level of the inhibited enzyme is the
same, but their Elasticity Coefficients with respect to S3 are very different,
as can be seen from the slopes at that point (Fig. 9).
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Figure 9: Effect of a pathway product, Ss, on the rate of the first enzyme E;
(cf. Fig. 8). (a) Competitive inhibition, (b) allosteric inhibition.

Let us consider in greater detail the interesting case when the pool lies
in this ‘control range” of an allosteric enzyme (curve b), i.e. in the range
of high Elasticity. A common question of importance is to enquire how
a system such as that in Fig. 8 responds to alterations in ‘demand” and
what role the feedback plays in this. Demand can be represented by an
effectively irreversible last step and variation in demand represented by
changes in the concentration of this last enzyme (Ey), which can be thought
of as having been brought about by some change in physiological state.

Consider, therefore, an increase taking place in the last enzyme (Ej).
The resulting tendency for S;3 to decrease would be counteracted by the
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sharp de-inhibition of E; in the control range. This has the effect of vir-
tually ‘locking” the pool within narrow limits over a wide range of last-
enzyme variation. The flux ‘extracted” from the system will therefore be al-
most proportional to the level of this last enzyme, since flux varies directly
with enzyme concentration in a constant pool environment. This means, of
course, that the last enzyme has a Flux Control Coefficient of almost unity,
i.e. it “‘controls’ the flux. Since the sum of the Control Coefficients in a chain
has been shown to be equal to unity, it immediately follows that the rest of
the enzymes, including the ‘controlled” one, have very low control coefficients
and therefore no ‘control’. This apparent paradox of ‘a controlled enzyme
exerting no control’ is in fact semantic and is resolved when it is restated as:
The enzyme has a high Elasticity Coefficient with respect to the controlling
pool, but its Flux Control Coefficient with respect to the system flux is low
(Appendix C).

The reason for these rather complex relations is to be found in the fact
that Elasticities (to pools) and Control Coefficients are interrelated contrary
to the independence of the Controllabilities (to parameters) and Control
Coefficients.

This emphasises the necessity to distinguish clearly the two types of
control, the one by internal variable, the other by external parameter. It
also raises the great difficulties in interpreting certain types of experiment,
where an intermediate pool is de facto converted into a parameter by sup-
plying it from outside (e.g. see Williamson, Browning & Olson, 1968). The
result of such an operation is really to alter the structure of the system.

Limits and Limitations

In conclusion it is important to consider the range of applicability of the
foregoing analysis. Throughout the treatment we have considered only
the steady state, applicable either to a constant volume or an expanding
system. The former has fixed internal and external parameters and time-
invariant values for pools and fluxes. It could correspond to, for instance,
an adult metazoan or a liver slice.

The expanding system also has fixed external parameters (nutrients)
and fixed enzymic parameters, but the quantities of enzymes, pools and
fluxes increase. In an exponentially growing system, however, volume in-
creases exponentially, as well as enzymes, pools and fluxes, so that their
concentrations remain time—invariant (e.g. see Stebbing, 1972). Such a sys-
tem could correspond to some early stages of growing organisms or a cul-
ture of micro-organisms, where time averages are found, since concentra-
tion changes of both enzymes and pools may occur periodically through-
out the cell cycles, and mycelial organisms where a single expanding phase
with constant concentrations is approximated. Expanding systems, how-
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ever, differ in the number of real fluxes since every steady—state pool bal-
ances not only its fluxes of formation and removal but also its flux to expan-
sion into the exponentially growing volume. Certain additions to the set of
flux equations must therefore be made to describe such a system (Appendix
A). The Summation Theorem must take this into account when applied to
such systems.

Our treatment does not deal with transients, the trajectories of the sys-
tem from one steady state to another. Experiments designed to measure
these transitions and interpret their results in control terms (e.g. see Hig-
gins, 1965) are therefore not served by our analysis. There are probably
relationships between our various coefficients and the relaxation times of
such events, but we have no explicit statements to make about them.

Since then some progress has been made in dealing with the tran-
sition times, T, of metabolic systems and their dependence on enzyme
concentrations. Meléndez—Hevia et al. [33] showed that a different
Summation Theorem (3, C] = —1) applies.

It has also been shown that Flux Control Coefficients are obtain-
able from observations of the pool transients [34]

Similarly the major changes which higher organisms undergo during dif-
ferentiation and development can only be marginally illuminated by the
analysis (Kacser, 1963). During restricted periods, however, when enzyme
changes may be slow compared to the metabolic relaxation times, a strict
steady-state treatment is still applicable.

The complex structure of metabolic systems provides the possibility
that, in certain parts, there may occur constellations of effective time con-
stants which will not result in a steady state of some pools, but will pro-
duce an oscillatory solution under certain conditions (See e.g. [35]). Such
circumstances are, strictly speaking, excluded from our treatment but we
believe certain time-average values would allow us to apply the general
results of our analysis.

A major problem, hardly touched on so far, and yet fundamental to ev-
ery theoretical and experimental approach, is the question of system lim-
its (Kacser & Burns, 1968). It is evident that the whole metabolism is one
system and to draw arbitrary lines around a part is unjustified. Yet of-
ten theoretical approaches start at a constant source of supply and, a few
enzymes — or even a few dozen enzymes — later, end in a ‘product’. Ex-
perimentally too, we sever or ignore vast portions of the map and happily
make our measurements. How justified are we in adopting these proce-
dures and are there any rules that tell us where to draw the lines? In some
special circumstances criteria for delimiting sub—systems can be given but,
in general, this remains a most intractable problem. A condition which
allows us to assign a ‘beginning’ to a sub—system (apart from externally
controlled substance) would be if the pool in question is effectively held
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constant by mechanisms outside the sub—system. One such mechanism
has already been referred to when a pool acting as a feedback signal to a
steep control enzyme was described as ‘locked’. Over a considerable range
of variation of any sub—system distal to this pool, the pool can be consid-
ered as a parameter. Similarly, if a pool is participating in many reactions
with considerable fluxes through it, one of these fluxes, particularly if it is
relatively small, may cause little alteration in the concentration. The ‘end’
(or “ends’) of a sub—system may sometimes be identified if there occurs an
effectively irreversible step to a product which represents another phase
(precipitation, gaseous product, etc.).

Such specific circumstances, however, may not be frequent enough to
serve as a general recipe for dealing with the problem. Is our analysis,
then, restricted to such rare cases? It will be recalled that the elasticity anal-
ysis yielded ratios of Control Coefficients by estimating Elasticities only.
These can be determined from the isolated enzymes or from steady-state
pools and these ratios are therefore not dependent on defining any sub-
system. It therefore requires only to determine the absolute value of one
Control Coefficient to calculate the values of all the others for which adja-
cent Elasticities are available. Sub-system limits are, therefore, not relevant
and hence not restrictive to this treatment.

On the other hand the Summation Theorem, if it is to be applied to a
small portion of the system, does depend on identifying a ‘beginning” and
an ‘end’.

This also applies to the methods referred to earlier, such as the ma-
trix method, where the values (rather than the ratios) of the Control
Coefficients are obtained from the Elasticities, because these calcula-
tions assume the applicability of the Summation Theorem to the sys-
tem. In addition, a number of other circumstances have been identi-
fied where the Summation Theorem may not be applicable or may need
modification. These include channelling (i.e. direct transfer of an in-
termediate from one enzyme to the next without it entering the bulk
phase) [36], enzyme—enzyme interaction in general [37] and group
transfer pathways [38]. Some of these questions are affected by the
form of the definition of the flux control coefficient [5], which will be
mentioned again in the notes to Appendix A.

The identification of units of metabolism that have a beginning
and end has been taken further in Modular Control Analysis [39, 40].
A module will be a set of connected reactions involving mass flows;
when its environment remains constant, it obeys the Summation and
Connectivity Theorems. Separate modules, either at the same level
(another metabolic pathway) or at a different hierarchical level (syn-
thesis and degradation of the enzymes of the pathway) may interact
via catalytic and requlatory interactions. Modular Control Analysis
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deals with how the Control Coefficients of isolated modules are mod-
ified to become overall Control Coefficients in a system consisting of
several interacting modules.

For determinations of absolute Control Coefficients the previously dis-
cussed method of genetic modulation is suitable, as also is a method of
using a specific enzyme inhibitor and applying relation (4). As far as Elas-
ticities are concerned extraction and reconstruction of the in vivo milieu
involve methodological and practical difficulties and these must be borne
in mind when such experiments are considered. In particular a knowledge
of the effective concentration surrounding the in vivo enzyme is required.
Where organelles such as mitochondria are involved this may not prove
excessively difficult. When evidence of compartmentation, not associated
with organelles, exists, however, the problem becomes extreme. There is
a means of circumventing these difficulties by in vivo Elasticity determi-
nations which consists essentially in producing suitable pool modulations
generated by alterations (e.g. inhibitions) to other components remote from
the enzyme in question [Note: since published as [21].]

A considerable number of experiments are performed, both in vivo and
in vitro, which change the concentration of a metabolite by a very large
step. Sometimes this is achieved through hormones or nutritional changes
and sometimes by direct presentation of the metabolite. We have already
commented on the methodological implications of changing variables into
parameters. Here we would like to restrict consideration to the quantitative
aspects.

The first thing to observe is that such large step experiments are outside
the scope of our modulation analysis. The various quantifiable coefficients
(CZ-] , "el, and k) are strictly differentials and in practice can only be esti-
mated by modulation experiments involving small changes. Large steps
could still be used if the whole curve (or a significant portion) is determined
and, by interpolation, the small change in slope is estimated. What cannot
be done is to compare usefully the metabolic values of two widely differ-
ing configurations. The reason for this is evident when it is realised that
the Control Coefficients, for example, change in value with large changes
of any parameter since they themselves are systemic properties.

An instructive example is given in Fig. 10. This represents the results of
a computer experiment in which the effect of changing the initial substrate
is varied. The system consists of a chain of five enzymes whose rate expres-
sions include saturation terms as in equation (12). By the general method
described elsewhere (Burns 1968, 1969) the flux was computed for a range
of values of the initial substrate, X. The computation also generated the
Control Coefficient of the flux with respect to each enzyme at all settings of
X. Fig. 10 shows the plot of flux against the substrate of the pathway. It is
seen that the flux responds in a reasonably monotonic fashion. The Control
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Figure 10: Effect of changes in the pathway substrate, X, on the flux.
Changes in the Flux Control Coefficients of the five enzymes are also given.
Computer simulation of a chain of saturable enzymes. (From Bacon, Burns
& Kacser, in preparation.)

Coefficients for some of the enzymes, however, change in a dramatic way.
It can be seen that E; has almost all the control for part of the X range (C{ ~
1) then declines rapidly and control is “transferred” to Es. This is connected
with the greater saturability of this enzyme. Such a switch could not have
been predicted from a measurement of the flux change only. Thus an ar-
bitrary large change in X may fall anywhere and even a knowledge of the
Control Coefficients at the start will give no indication of their distribution
at the new point. This kind of situation may well apply to many of the re-
ported experimental investigations. If large steps are therefore produced,
modulation analysis at both points must be carried out.

In some cases a naturally occurring situation is found to involve changes
of considerable magnitude and widespread consequences. Thus, e.g. Bul-
tield (1972) has shown that the obese and adipose alleles in the mouse, apart
from exhibiting about twice the rate of lipogenesis of their normal alle-
les, show simultaneous alterations in at least fourteen enzymes. Although
certain genetical conclusions can be drawn from these investigations, he
points out that it is impossible to draw any meaningful conclusions con-
cerning rate control from such comparisons.

There have since been a number of significant developments in us-
ing the control coefficients to predict the effects of large changes in
enzyme activities [41, 42]. The theory developed in these papers also
clarifies why a two—fold change in lipogenesis requires an increase in
the activity of so many enzymes, and explains from a Metabolic Con-
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trol Analysis perspective why it will generally be difficult to obtain
large increases in flux by modulating single enzyme. Out of these in-
sights have come proposals as to how metabolism can be modified to
achieve a selective increase in a particular metabolic flux, the ‘Univer-
sal Method’ [43].

Conclusions

The purpose of the foregoing analysis has been twofold. In the first place
it has attempted to set the problems of control in biochemical systems on
a conceptually sound basis. As we have shown, there are a variety of phe-
nomena and procedures which must be distinguished, and distinguished
clearly, if experimental evidence is not to founder on semantic confusion.
Controllability is distinct from the sensitivity to control. Direct paramet-
ric influences are distinct from those acting, perhaps at many removes,
through the system. Systemic properties are distinct from those measur-
able on isolated components.

Elucidation of the conceptual issues, however, is not enough in an area
where logical argument has to be supplemented by quantifiable relations.
The analysis, therefore, has to be carried out within the framework of ki-
netic systems theory and the concepts must be given precise quantitative
definitions. When this is done relationships are uncovered which allow a
clearer understanding of the complex processes within the organisms.

An important conclusion was that the “‘pacemaker’ (or similar term) has
little meaning (except in extreme circumstances) and should be replaced
by the assignment of a quantity, the Flux Control Coefficient, to each of
the enzymes. There will, in general, be a distribution of such values of
coefficients in a pathway rather than two extreme classes.

Our theory also shows rigorously how these coefficients may be calcu-
lated from easily accessible data such as disequilibrium ratios, equilibrium
constants, maximal velocities and Michaelis constants. The relevant for-
mulations derived from our theory were compared to a variety of criteria
which had been suggested on mainly intuitive grounds.

Alternative to these methods we showed how direct determinations of
Flux Control Coefficients can be made by modulation of enzymes. The
method of modulation was equally applicable to the determination of Elas-
ticities which stand central in our theory.

The second purpose was to marry theory to experiment and observa-
tion. Experiments suggest theories and the interpretation of results is al-
ways carried out within the context of such a theory and its assumptions.
We have attempted to show that the area of control requires a quantitative
theory and have presented its outline. Equally important is the feedback
from theory to experiment. We have suggested what new types of experi-
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ment might be done — and what experiments we could do without. Our
theory generates its own methodology and the technique of modulation is
basic to this approach, making it possible to match operational and alge-
braic procedures.

The feedback from theory to experiment has been well illustrated by
the subsequent development of Metabolic Control Analysis, in which
many biochemical, genetic and molecular biological techniques that
were originally developed for different purposes have been modified
and applied in new ways to measure the coefficients described here
(seee.g. [7, 8]).

Appendix A. Mathematical Representation

We begin with a mathematical formulation capable of representing the steady
state properties of fairly general biochemical systems. The system may be
growing or non-growing, the enzyme concentrations may be fixed or sub-
ject to regulation by the levels of small metabolites, the reactions may be
bimolecular or of higher order and may be subject to inhibition or activa-
tion by remote metabolites.

Consider the system at any moment to have concentrations Sy, Sy, etc.,
of intermediary metabolites and to exist in a volume V, not necessarily con-
stant. In unit volume of this space the net rates at which the different
enzymes, considered separately, produce or remove their substrates and
products are represented at any instant by values vy, v, etc. For a metabo-
lite with concentration S; the total amount present in the system at any
moment is VS;. The net rate of its production in the whole volume can
be found by adding or subtracting terms of the form Vv, Vv, etc., in ac-
cordance with the information from the metabolic map concerning which
enzymes remove or produce which metabolites. Assuming, for example,
that the metabolite with concentration S; is produced by the first and third
enzymes and removed by the seventh, we can write:

rate of increase in total amount = net rate of production in whole

volume.
o d(S;V
(dlt ) = Vv; + Vo3 — Vouy
This can be written in the form
dSq 1dy
tﬁ—vl+v3—v7—(vdt> Sl. (Al)

For the steady-state condition, in which we are primarily interested, the
pool concentrations become stationary, dS1/dt = 0, and the system settles
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to a steady exponential growth rate, G, with G = 1/V(dV/dt). Thus, at the
steady state, the condition for balance at the first metabolite gives

U1+U3—U7—G51:0 (A2)

In this steady state condition any rate per unit volume, v, is in principle re-
lated to the enzyme concentration and to the concentrations of all metabo-
lites interacting with enzyme by a suitable rate equation (e.g. see Cleland,
1963). Suppose, for example, that the reaction rate v; is catalysed by an en-
zyme of concentration E;, which interacts with internal metabolites S; and
Ss, the rate equation could be formally written as :

v1 = f(E1,51,55,P1, P2, X1, X2)

or = vy, for convenience. Such a rate equation also involves genetically
determined parameters P;, P,, etc. (e.g. Michaelis constant, inhibition con-
stant, etc.) as well as the environmentally set parameters X; and X» (levels
of nutrients, effectors, etc.).

In general the enzyme concentrations E;, E;...will themselves be re-
lated to the concentrations of any pools which act as signals within the
enzyme control loop. This relation can be taken account of by replacing the
enzyme concentrations, occurring in the rate expression, with suitable ‘reg-
ulatory” functions. Thus the inclusion of enzyme regulation in the mathe-
matical formulation only involves using more complicated ‘general” rate
expressions and does not alter their number or their disposition in balance
conditions such as (A 2). The condition for balance at S; can now be written
as an algebraic equation involving these general rate expressions

vi+vy—vy—GS1 =0 (A3)

This is a balance equation involving the parameters mentioned above and
the unknown steady-state values of the variable pools S, Sy, etc. There
are as many such equations as there are pools since a similar balance must
apply for each pool. The solution of this complete set of simultaneous al-
gebraic equations, involving general rate expressions, thus represents the
way in which steady state fluxes, ], and pools are related to the underlying
genetic and environmental parameters. The steady state fluxes, |, are val-
ues which the rates, v, take when a steady state is achieved. It is usually
the case that the equations cannot be solved but nevertheless the represen-
tation just stated provides the basic theory of control outlined in this paper.

The terms —GSy, —GS; . .., which occur in the above balance equations
represent the effect of exponentially increasing volume, the value of G be-
ing zero when no such increase occurs. They are formally equivalent to the
rates, vy, 2, etc., and can be thought of as fluxes to expansion.



The Control of Flux 35

Coefficients and Differentiation

The control coefficients introduced at various points in the paper are all
measures of the relations between a fractional change and a fractional re-
sponse:

fractional response = coefficient - fractional change

The coefficients are related to partial differentiation and this will be used in
our subsequent theoretical treatment.

Local coefficients

The local coefficients are concerned with the response of isolated reactions.
They were defined in the limit as:
For ‘Controllability”

dvl' K i dp
— = A4
v & (A4)
For ‘Elasticity’
d’()l’ i dS

The relation of the coefficients to the partial differentiation of rate expressions
is thus seen to be of the form

i P aVi
“ep = 0 9P (A6)
i S avi

where 9 represents the operation of partial differentiation. [Note: and v;
represents the rate function. ]

System coefficients

These coefficients are concerned with the response of system flux, J, to a
parametric change. The flux, ], involves the solution of the complete set
of simultaneous equations (A3). This solution can be formally written as a
function involving all the parameters of all the enzymes and all the external
parameters.

Considering first the case where the enzyme concentrations Eq, Es, ... can
be treated as parameters, this function would be of the form

J=f(E1,Ez,Es,...,P1,P5,...,X1,Xo,...) (A8)

or
=], denoting the function
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The system coefficients were defined in the limit as:
For ‘Response’

dJ 7 dP;
=R, =1 A9
] P; Pz' ( )
For “Sensitivity”
df  _jdE;

The relationship of the coefficients to the partial differentiation of the solu-
tion of the set of simultaneous equations is thus seen to be

j_Pa
Rp = [P (A11)
and E 3
] _ i
C = T 3E; (A12)

General Control Coefficients

The account so far given of the Control Coefficient, Cl.] , has assumed that
the enzyme concentrations can be considered as parameters in the formal
function (A 8). This will not always be the case and it is necessary to define
the coefficient in a more general way than hitherto. In this situation the
balance equations (A 3) will involve general rate expressions and will not
refer directly to enzyme concentrations. However, they can be rewritten
with a new set of parameters, ¢, e, etc., introduced so that each occurs as
a multiplier within its corresponding rate expression, v1,vy,...,v,. Further
parameters, e, ..., are formally attached to the terms representing flux
to expansion. The purpose of introducing these parameters is that they are
related to the various rate expressions in the same way as the enzyme con-
centrations were related when considered as parameters. Using Vll, V5, ...to
refer to the original rate expressions of (A3), the new form of the balance
equation is
e1vy + e3vy —eyvh —e,11J.51 =0 (A 13a)
or
Vi+vVv3—vy—v,1 =0 (A 13b)

where v; ...v, are now functions combining ¢, and v, = €,:1GS;. The
solution of this set of simultaneous equations, which do not now refer to
enzyme concentrations, but which include e parameters, can be written for-
mally as for the system flux, J:

]:f(81,€2,€3,...,Pl,Pz,...,Xl,Xz,...) (A14)

When the parameters e, ey, ... have the value unity, the original steady flux,
J, will be unaltered by their presence but we can now consider the response
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of | to modulation of the e-type parameter occuring in any particular rate
expression. For the enzyme reactions it will be recognized that the e-type
parameters are equivalent to turn-over numbers. The control coefficients
for these abstract parameters are in fact the generalized definition of Con-
trol Coefficient which we are seeking. The general Flux Control Coefficient
is then defined, in the limit, as:

d ] ]del-

o= Al

] C . (A15)
Expressed as a partial derivative of (A14), Ci] is of the form

o =49 (A 16)

LT de

Allthough there was agreement in the new terminology to stan-
dardise on the definition of the Control Coefficients in terms of en-
zyme concentration, there are technical advantages of a more general
definition in terms of an e—type parameter. Heinrich & Rapoport [2, 3]
assumed a more general parameter acting on enzyme rate in their orig-
inal development. This was also considered by Reder [32], and there
has also been a more recent discussion of the differences between the
various definitions [5].

Appendix B. Relations Between Coefficients

A number of general relationships exist between coefficients and were re-
ferred to in the paper; these will now be proved. The method of proof is
similar throughout and involves the consideration of certain small move-
ments of e-type parameters (A 13). The effects of these movements on the
system are written out using the coefficient definitions of (A 4), (A 5) and
(A 9),(A 10).

The response of an isolated reaction to movement of its e-type parame-
ter will often be required and is, by definition (A 13), directly proportional.
So that for an isolated reaction

2= (B1)

Partitioned response

The relationship R, = Cl.] Ksip of equation (4) can be proved by considering
the situation when, in a system, a differential movement of a parameter, P,
affecting an enzyme is exactly neutralised by a contrary movement of its e-
type parameter. Under these circumstances no pool or flux has moved and
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the only changed factors affecting the enzyme are P and e. This can now be
viewed in two different ways. Firstly considering the local situation of the
enzyme we can write down the fact that the sum of the effects from P and
e on the rate is zero, by using relations (A 4) and (B 1), which involve local

coefficients. Thus i dP p
0 e;
2 L B2
o pp t =0 (B2)
On the other hand we can write down the same fact, that the net effect is
zero, using the relations (A 9) and (A 10) which involve system coefficients.

Thus d] ap p
— R, =+
J P ej
Elimination of the ratio (dP/P)/(de;/e;) from (B 2) and (B 3) then yields
the required result of

=0 (B3)

R} = Cl*é (B4)

Elasticities and Control Coefficients

Any given pool will usually influence the rate of several enzymes either by
being involved as a substrate or a product of them, or as a remote effector.
There is a general theorem which connects the Control Coefficients of such
a group of enzymes with their Elasticities to the given pool.

This is the theorem now known as the Connectivity Theorem.

Equation (10) is an application of the theorem to the case where a pool
influences only its two neighbouring enzymes in a pathway. Equation (19)
is an application to the case where a pool influences an enzyme remote in
the pathway in addition to its neighbours.

The theorem itself is quite general but will be proved for the case where
the given pool, S, influences any three enzymes, E;, E; and Eg, in a general
metabolic network. Let the enzymes have elasticities with respect to S of
ek, €2 and €3 respectively.

If we imagine a differential movement 4S/S in the given pool then it is
always possible to choose movements in the e-type parameters of the sepa-
rate enzymes such that they exactly balance the effects of the S movement.
Using (B 1) and (A 5) to express the fact that the sum of the effects of e and
S on the isolated enzymes are zero, we obtain the following:

\
de ds

For E;, e—l—k 155 =0
1

For Ep, ‘1662+8§‘155 -0 (B5)
2

For E3, d:3—|-£?§dSS =0
3



The Control of Flux 39

On the other hand these e movements will clearly maintain a new steady
state differing from the original only in the pool S. In particular, no change
will result in any given flux, J, as a result of these ¢ movements. We can
express this fact by writing down that the sum of the effects of the e move-
ments, acting within the whole system, is zero. Using (A 15) this gives
d de de de
S —o-c P2+ (B6)
Using (B 5) to replace the ratios de/e in (B 6) by the common factor dS/S
we obtain the required general relation between Flux Control Coefficients
and Elasticities as

Clel + Cle2 + Cle = 0 (B7)
It should be noticed that the theorem (B 7) is very general since the three
enzymes are not necessarily in the same pathway and the Control Coef-
ficient can refer to any given flux, J, within a general metabolic network.
The applications leading to equations (10) and (19) in the paper are for the
restricted case where the enzymes all carry the same pathway flux.

General Summation Theorem

Inspection of the generalised balance equations (A 13) shows that if all the
e-type parameters, including those formally attached to expansion fluxes,
were simultaneously increased by a small fraction «, then any given system
flux, J, would also undergo a fractional increase « and no steady pool levels
would be altered. This is because the balance of the rates would not be
disturbed by such a change, only the rates being altered.

This part of the proof is related to the analgous summation theo-
rem for Concentration Control Coefficients put forward at this time
by Heinrich & Rapoport [2]. This states that the sum of Control Co-
efficients for the concentration of a particular metabolite over all the
enzymes in the system is zero.

We can thus write for any flux, J:
total change = sum of changes due to separate e modulations,
remembering that the total change is « and, using (A 15) to express the
effects of the separate e modulations, this becomes
de
« = =2 +d=4
€1
— J ]
= a(Ci+C+..))

Hence
Cl+C+...=1 (B8)
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The theorem is a general one applying to any steady-state in a metabolic
system of any complexity. It should be noted, however, that the sum is over
all e-type parameters, that is it refers to Flux Control Coefficients associated
with all enzymic steps in the system and also the Flux Control Coefficients
associated with all fluxes to expansion.

There are many other relationships between coefficients that have
since been proved, and indeed additional coefficients have been defined
(see recent reviews for a summary [7, 8]). The Concentration Con-
trol Coefficients defined by Heinrich & Rapoport and the Summation
Theorem governing them [2] have been mentioned above. In addition,
these authors also proved a relationship between the Flux Control Co-
efficients and the Concentration Control Coefficients that also involves
the Elasticity Coefficients. Fell & Sauro [26], using the type of argu-
ments shown above, developed a method (the matrix method) that
claimed to be able to express the Flux Control Coefficients in terms
of the Elasticities in any pathway structure, though this required de-
veloping additional relationships between certain of the Flux Control
Coefficients in branched and cyclic systems (the Branch Point Rela-
tionships) and modification of the Connectivity Theorem where pairs
of metabolites contain a conserved moiety (such as nicotinamide in
NAD™ and NADH). Many authors have since expanded this work
(e.g. [271), but of particular note is the work of Reder [32], who
showed that all these relationships would be valid in pathways of any
arbitary structure by applying more purely mathematical reasoning
rather than working from thought experiments on physical systems.
Her work also showed that the Summation Theorem and the Branch
Point theorems were different aspects of the constraints imposed by
the structure of a metabolic network.

Appendix C. Applications

Straight chain of unsaturated enzymes

We will now consider in detail the application of the theory to the par-
ticular case of a chain of unsaturated enzymes, E;, E», ..., E,, carrying
out the overall conversions of an external substance X; to another exter-
nal substance X, via successive intermediary metabolites Sq, Sy, .... This
is indicated in Fig. 11 and is of interest because it is possible to solve the
simultaneous equations representing the system explicitly to yield an ex-
pression for the pathway flux, J, in terms of enzymic and environmental
parameters.
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Eq E; Ey
X1 — S5 — S — 50 — X

Figure 11:

Explicit solution

Suitable rate expressions to represent the reversible unsaturated enzyme—
catalysed reactions at each step were suggested in equations (13). Using
these together with the fact that, at the steady state, all the rates, v, must
equal the pathway flux, |, we can write the set of equations

M; K
V. S
w=]=e (5-2) )
V X
Un:]:A/In<Sn—1_K2>
n n

V and M represent the maximal forward velocity and Michaelis Con-
stant of the successive enzymes and K the Equilibrium Constants. The un-
known pool levels Sy, Sy, etc., can be eliminated from (C 1) by dividing the
left hand sides by the appropriate V /M terms and also by K; for the second
equation, K;Kj for the third and so on. Addition of all the equations in this
form eliminates the Ss and leads to

My My M;3

v ) =X1—-Xo/(KiKy ... K
](Vl +V2K1+V3K1K2+ > 1 2/( 1K> n)

Hence the required solution for | is

o My M, M
J= (X1 Xz/(Kle...Kn))/( Vi + VoKs + VaKiKs —|-> (C 2)

This result shows immediately that all the enzymic, environmental and
thermodynamic parameters are intimately involved in determining | and
that no single factor need necessarily be controlling.

Flux Control Coefficients

Since in this case we have an expression, (C 2) of type (A 8) for the flux,
we can discover the Control Coefficient of | with respect to the different
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enzymes by direct differentiation as specified in (A 12). Thus we have,
for the first step, and remembering that the Vs are equivalent to enzyme
quantities,

oy
G= ] oy
which yields
j_ MMy My
(M e ), -

By the same process the Control Coefficients of other enzymes turn out to
involve replacing the term in the numerator by the term in the denominator
corresponding to them. For example:

M; M, M,
cl = 1 .. C4
3 V3K1K2/(V1 +V2K1+ ) (C4)
We can see that

My M> M, M,
iy = (2 -1 ) =1
el (vﬁszﬁ )/<v1+v21<1+ )

which confirms the general Theorem (B 8).
Inspection of (C 3) and (C 4) directly confirms the criteria of equation
(17) for relative Control Coefficients in terms of maximal velocities,

Joml .. M My My
cl.cl.cl:.... = K VKRG

Alternatively equations (C 1) can be used to write this criterion in terms of
pool differences, thus confirming equation (15).

Criteria for Flux Control Coefficients

We now wish to consider more rigorously the basis of the criteria for rel-
ative Flux Control Coefficients set forth in the paper and just confirmed
in the particular example of an isolated chain of unimolecular unsaturated
reactions. In particular we will consider in what way the criteria are af-
fected by the pathway being embedded within a larger metabolic system
and by effects such as feedback inhibition within the pathway and enzyme
saturation.

The basis of the argument for establishing relative Control Coefficients
involves connecting the Control Coefficients of the enzymes with certain of
their Elasticities, namely those concerned with their response to the pools
which are links within the pathway. This connection depends on a general
result, relation (B 7), and does not exclude situations where, for example,
the reactions are also coupled to ATP or perhaps inhibited by a metabolite
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remote from the pathway. The values of the Elasticities for these other ‘out
of pathway’ substances do not appear in (B 7) and therefore do not affect
the results concerning relative Control Coefficients, no matter how complex
the rest of the metabolism may be.

Relation of Elasticities to disequilibrium and saturation

Consider a single saturable enzyme within a chain having substrate S; and
product S, within its pathway and possibly other substrates and products
coupled to it from outside the pathway. From the point of view of obtaining
the Elasticities by differentiation of a rate expression, using relation (A 7), a
reasonable representation of a situation in which several metabolites may
be involved in a reversible and saturable reaction is:

S 1 52 a b >

1%
= — b — Sycd/K 1+ — — +— ...
v M(Sla Szc/)/<+M+M*+Ma+Mb

(C5)

This will be recognised as a generalisation of equation (12) for a unimolec-
ular reaction which was:

1% S, S
v:M(Slsz/K)/(lJerIwLMi) (C6)

The additional substances denoted by a, b, c and d represent substrates and
products outside the pathway which will enter into both the disequilibrium
term (i.e. the numerator) and the saturation term of the generalised rate
equation (C 5). The terms M,, M,, etc., in (C 5) represent the necessary
extra Michaelis constants. As mentioned above we do not need to assume
that the co—factors a, b, c and d are in any way held constant.
Using (A7) we can now write down the Elasticities as:
for substrate,

o Sqiab B S1/M (C7)
517 Siab—Syed/K 14 (S1/M) + (So/M*) + (a/M,) + ...
for product
SU _ —Ssz _ SZ/M* (C 8)
27 Siab— Syed/K 14 (S1/M) + (So/ M*) + (a/M,) + ...

These Elasticities can be seen to be simply related to the general disequi-
librium ratio, p = (Szcd)/(S1ab)/K, of the reaction, and to the degree of
saturation of the enzyme by substrates as measured by the term Q; and Q>
where

Q= % (14 (S1/M) + (Sa/M*) + (a/ M) +...) , etc.
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Using this relation we can write the Elasticities in (C 7), (C 8) as for

substrate,
1
521:71_P—Q1 (C9)

for product,

€ = 1_"p - Q (C 10)

Clearly if the substrate and the product are small compared with their
Michaelis constants then the Q terms will be small and the Elasticities will
reflect the disequilibrium situation. However, even if the enzyme is satu-
rated, when the Q terms may approach unity, the equilibrium terms will
still dominate when the reaction is close to equilibrium, p = 1, since in this
case they become very large. In the case of the unimolecular equation, (C 6),
it is possible to write the Elasticities as their disequilibrium term multiplied
by a correction factor which involves the ‘flux saturation’, [/ V.

Thus by using (C6) we can write (C9) as

v 1 /
4= (7)

However, this relation does not hold for the general rate equation of (C
6), in which we are presently interested.

Relative Control Coefficients with feedback inhibition

Figure 12:

We will assume that the various steps are either unsaturated or close to
equilibrium in which case their Elasticities to substrates and products in the
pathway will be given by 1/(1 — p) and —p/ (1 — p) respectively. The pools
S1 and S only influence their neighbouring enzymes whereas the pool S3
also exerts a feedback inhibition on E; measured by 8153, the Elasticity of E;
to S3.
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Let p1, 02, 03, p4, be the disequilibrium ratios of the four steps and sup-
pose, for convenience and since the absolute values are not known, that the
value of C{ = 1—p;. We can find Cé by using the general relation (B 7).
Thus

] —P1 1
Cll—p1+C21—p2_0

Remembering that we set C{ =1 — py, this gives

C) = p1(1 - p2)

We can now carry the identical operation to link Cé and Cé which yield

Cl=p102(1 - p3).
However, in order to calculate Ci we must note that three enzymes are
connected by S3 which gives

—03 1
C{5153+C§1_p3+q{1_p4 =0

Using the known values for C{ and Cé this gives

Cl = p10203(1 — pa) — (1 — p1)ek, (1 — pa)

Collecting these together we have the result
C{ : Cé : Cé : Ci =(1—-p1):p1(1=p2): p1p2(1 —p3) :

10203(1 — p4) — (1 — p1)eg, (1 — pa) (C11)

Clearly, when 8153 = (0 and there is no feedback this confirms and extends
the previous result, equation (16), making clear that it is fairly generally
applicable.

When the feedback is operating the result (C 11) allows us to under-
stand more clearly how it modifies the pattern of Control Coefficients which
would be expected form the disequilibria alone. Thus we see that if 8153 is
large it will tend to make the flux sensitive to the enzyme E4, that is, it will
transfer some of the control out of the loop. On the other hand the idea that
the controlled enzyme should have a high Control Coefficient is partially
borne out if we note that this transfer of control will be most effective when
p1 ~ 0. This will give C{ > Cé and Cé even though Ci > C{. In other
words E; should have a relatively high Control Coefficient within the loop
if control is to be effective.

This last paragraph embodies one of the most important results of
Metabolic Control Analysis, but one which has proved unwelcome be-
cause it has contradicted conventional views of metabolic regqulation.
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Ey is a regulatory enzyme which is concerned with homeostasis be-
cause the feedback effect adjusts the rate of supply of Sz to the rate of
its consumption by E4. This has the effect of making the enzyme a
poorer site for the exercise of control by external effectors that mod-
ify the enzyme activity because its Flux Control Coefficient has been
reduced. Metabolic Control Analysis therefore makes a clear distinc-
tion between regulatory effects and control, whereas there has been an
unwarranted assumption that requlatory enzymes are potential con-
trolling enzymes. The issue is discussed at greater length in [44],
but a potent illustration of the force of the arqument presented here is
the failure of a number of genetic engineering experiments to increase
pathway flux by increasing the expression of regulatory enzymes sub-
ject to feedback inhibition.
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Summary of changes

The following list shows the equaivalences between the terms and symbols used in
the original paper and the current terminology used in this current version.

Kacser & Burns, 1973 This paper
Term Symbol Term Symbol
Flux F Flux i
Response Coefficient R Response Coefficient R{,
Controllability Coefficient K (external) Elasticity Coefficient Kelh
Sensitivity Coefficient Z; Flux Control Coefficient C l]
Elasticity Coefficient Vigg Elasticity Coefficient e
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